skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chevreuil, Pierre-Alexis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. High harmonic generation (HHG) in atomic gases is generally assumed to originate from photoelectrons that are not perturbed by neighboring particles. In this paper, we study theoretically and experimentally the regime where this approximation breaks down. At high laser intensities, we experimentally find that producing soft x-rays beyond this single-collision condition leads to a strong reduction of the coherent HHG response and appearance of incoherent radiation. We generalize our results to phase-matched HHG with mid-infrared drivers, and determine that aminimum pulse energyis needed to simultaneously phase match the HHG process and keep photoelectrons unperturbed by surrounding particles. Therefore, while previous research showed that HHG efficiency is independent of the driving pulse energy if other experimental parameters are scaled accordingly, we find that this rule no longer applies for high photon energies. Our study thus provides important guidelines for the laser parameters needed for the generation of high flux soft x-ray high harmonics. 
    more » « less